

Diferencial:

- Garantia de diâmetro mínimo e continuidade da coluna executada.
- Argamassa com módulo controlado.
- Todas as colunas formadas são monitoradas e controladas, com emissão de relatório: profundidade, pressão e volume.
- Executadas em solos compressíveis ou arenosos, com presença ou não do lençol freático.

(21) 98808-4823 | 97226-7970 contato@engeground.com.br www.engeground.com.br

Compaction Grouting Systems (CGS) é uma técnica de melhoramento de solos moles, que tem como objetivo o aumento significativo nas características mecânicas de solos coesivos ou arenosos com presença ou não do lençol freático, através da execução de colunas melhorando o comportamento em geral do solo compósito formado (interação entre solo melhorado e coluna de solo-cimento)..

Aplicações

CGS são utilizadas para melhorar as características dos depósitos de solo mole, reduzindo sua compressibilidade pela execução de colunas rígidas, com módulo controlado, de reforço do solo. O objetivo é aumentar a rigidez do depósito de solo mole reduzindo recalques totais e diferenciais, compartilhando a carga da estrutura entre as colunas executadas e o solo melhorado.

Vantagens

O método de CGS é uma alternativa bastante atraente entre diversos métodos de inclusões rígidas.

 A alta rigidez do grout leva o solo compósito formado á alta performance, permitindo o suporte de altas cargas e a rigorosos requisitos de deformações.

Interrupção de processo de recalques em galpões, reforço do solo de fundação e restabelecimento sua capacidade suporte.

- Além disso, devido a utilização de grout com módulo controlado, não há limitação para o tipo de solo, que a técnica pode ser aplicada: argila, sedimentos, turfa, argila orgânica, etc.
- Na execução não há escavação e é livre de vibrações, o que dá vantagens em terreno com rigorosos requisitos ambientais e nas imediações de estruturas.
- Devido a sua elevada produção e rápida execução, torna-se uma solução rápida e econômica.

Aplicação típica

Graças a adaptação em equipamentos compactos, CGS é aplicável em tipo de projeto, seja pequenas residências a grandes projetos de infra-estrutura. As aplicações típicas da técnica de CGS são:

- Infra-estrutura: rodovias, aeroportos, portos e ferrovias;
- Edificações: galpões, casas e edifícios;
- Indústrial: tanques, silos, instalações industriais, refinaria de petróleo e gás..

Materiais

CGS são colunas de solo-cimento de baixo módulo (2 a 15MPa), com slump especialmente formulado para ser bombeável. Aditivos podem ser utilizados para atingir as especificações desejadas de projeto e cimento resistente a sulfato também pode ser utilizado quando necessário. A baixa quantidade de cimento necessário para formulação do grout torna a técnica bastante econômica. Embora seja geralmente fornecidas por empresas concreteiras já prontas no local, centrais de dosagem também podem ser utilizadas no local para um melhor controle do abastecimento. O grout é controlado através da coleta de amostras para posterior ensaio em empresas especializadas.

<u>Implementação e métodos</u>

O trado é especialmente projetado e desenvolvido para utilização equipamentos com alto torque e alta pressão estática, que desloca o solo lateralmente, sem danificá-lo e livre de vibração. O trado é cravado no solo, até a profundidade de projeto, resultando num aumento da densidade do solo circundante.

A coluna é executada na subida do trado com o grout sob pressão controlada, limitada a 5 bar. O resultado é um sistema de solocompósito formado pela coluna de CGS e o solo com suas características de cisalhamento e módulo melhorados.

Controle de qualidade

Com a aquisição de parâmetros de produção (profundidade, volume de grout e a pressão), CGS é uma tecnologia altamente e continuamente controlada. Testes de carga são regularmente realizadas com objetivo de verificar a capacidade de carga em um conjunto de quatro colunas e o solo entre elas e/ou em uma única coluna.

Condições adequadas do solo

À medida que a integridade das colunas é assegurada pela utilização de grout com módulo e slump de projeto, CGS pode ser implementado em qualquer tipo de solo mole coesivo, mesmo os mais fracos, como argila, lodo, material orgânico (turfa, argila orgânica) e, em material arenoso.

Camada de transição

Sob estruturas uniformemente carregadas, tais como aterros ou pisos, uma plataforma de transferência de cargas é concebida

entre a parte superior das colunas e a estrutura para transferir eficientemente a carga para as colunas do CGS. Esta plataforma de transferência de carga pode ser feita de material granular bem compactado, com uma espessura de 0,4 a 0,8m, dependendo do tipo de estrutura e as condições do solo.

Faixa de cargas

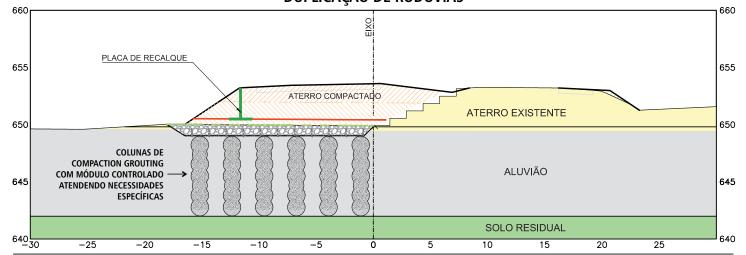
A elevada rigidez do solo compósito resultante das colunas do CGS e do solo melhorado, permitem a utilização da técnica para suportar cargas tão elevadas como 400kPa, respeitandose os rigorosos requisitos de projeto. Deformações típicas, pós-construção, com a solução de CGS estão na faixa de 10 - 20mm em condições normais de carregamento.

<u>Sustentabilidade</u>

Devido ao fato de não gerar escavações, o CGS é uma solução de enfoque ecológico, evitando problemas relacionados à eliminação de resíduos e pode ser implementada em locais com solos contaminados que não podem ser transportados e eliminados facilmente.

Além disso, uma vez que é uma mistura com baixa quantidade de cimento, é uma alternativa sustentável para a maioria das soluções de inclusões rígidas.

COMPACTION GROUTING POSSIBILITAR A CONSTRUÇÃO E DUPLICAÇÃO DE RODOVIAS



Em serviços de infraestrutura como aterros rodoviários, as colunas de CGS são utilizadas para melhorar as características das camadas compressíveis do solo e reduzir sua compressibilidade. Ao contrário de soluções com estaqueamento, que é projetado APENAS para suportar o carregamento imposto transferindo para camadas competentes de solo, o objetivo da solução de CGS é aumentar a rigidez da massa de solo, reduzindo globalmente os recalques totais e diferenciais, compartilhando o carregamento imposto entre o solo (com características geotécnicas melhoradas) e as colunas de CGS.

Parte do carregamento imposto pelo aterro é transferido para camadas competentes através das colunas do CGS. Após os serviços de melhoria, a massa de solo se comporta como um bloco (solo compósito = solo + colunas), com características de rigidez melhoradas. Todo processo de execução é livre de vibração e não gera qualquer tipo de resíduo à superfície, o que permite um ambiente de trabalho mais limpo e limita do risco de contaminação.

Sob estruturas uniformemente carregadas, tais como aterros e lajes, uma plataforma de transferência de carga deve ser executada entre a parte superior das colunas e a estrutura de modo a transferir eficientemente a carga para as colunas do CGS. Esta plataforma de transferência de carga é feita de material granular bem compactada, e tem uma espessura de 0,4 a 0,8m dependendo do tipo de estruturas e as condições do solo.

DUPLICAÇÃO DE RODOVIAS

POSSIBILITAR A CONSTRUÇÃO E REPARO DE ENCONTRO DE OAES

Equipamento e Metodologia de Execução

A execução desse processo consiste na introdução, através de rotação, o trado especialmente projetado no terreno, alimentado por equipamento com grande capacidade de torque e alta pressão. Não há remoção do trado durante todo o processo. Segue-se a etapa de execução das colunas, que consiste no bombeamento da massa de argamassa especial através do tubo central, à medida em que o trado é removido girando no mesmo sentido da entrada no solo. A aplicação é levada até a superfície

do terreno, garantindo o arrasamento da coluna.

Esse processo gera um sobreconsumo de argamassa de aproximadamente 10%. Contudo, esse excedente não deve ser encarado como desperdício, mas sim como máxima garantia do total preenchimento da coluna e necessidade de compactação do solo.

Como esse processo não há escavação, a estaca está pronta para ser arrasada e conforme a necessidade do projeto, visando futura escavação, a coluna pode levar uma armação em seus primeiros metros.

COMPACTION GROUTING RECUPERAÇÃO DE GALPÕES E CENTROS LOGÍSTICOS

VANTAGENS

- Total ausência de vibrações, podendo ser utilizado nas imediações de estruturas sensíveis edificações e obras de arte.
- Baixo nível de ruído.
- Alta produtividade (média de 15 a 25 colunas produzidas por dia/equipe).
- Existência de processos que permitem o controle efetivo da execução, através de monitoramento eletrônico e emissão de relatórios.
- Ambientalmente correto, já que não há escavação.
- Praticamente sem limitação de uso para qualquer tipo de solos compressíveis, incluindo solos com teor orgânica significativo (turfas, argilas orgânicas...).

